The Great Whale

Call me Ishmael (my name is actually Paul). Whenever a balmy November wind blows across my bow and chills me to the bone, when the brisk November air suggests that autumn is turning to winter, when the skies of night become calm and tranquil and abound with good astronomical seeing, and whenever I find my heart longing for a dark observing site, I account it is high time to set sail into the infinite seas of the cosmos.

Pseudo Melville, The Great Whale

Plowing through interstellar space at 291,000 miles per hour the binary orange giant Mira leaves a 13 light year tail in its wake. NASA Image
Plowing through interstellar space at 291,000 miles per hour the binary orange giant Mira leaves a 13 light year tail in its wake.
NASA Image

 

An AFSIG Article by: Paul Trittenbach

Moby Dick is probably the most infamous manuscript of Herman Melville. Scholars may disagree that it was his best work, but the novel does touch the soul of any reader. Moby Dick is fraught with emotional and philosophical undercurrents that leaves an indelible mark upon those who voyage through it pages. Melville inspired me when I found my thoughts turning to create a web article for November. Both Moby Dick and my composition have something in common—a great whale!

The Constellation Cetus, the whale, swims in the 13.8 billion light year ocean of our universe among other constellations associated with water: Eridanus, Aquarius and Pisces. In Greek mythology Cetus was known as “the sea monster” from the myth of the princess Andromeda. According to the myth, Andromeda’s boastful mother, Cassiopeia, angered Poseidon (the god of the sea) and the Nereids (nymphs of the sea), by claiming that she was more beautiful than they. Poseidon sent Cetus to punish King  Cepheus and his wife Cassiopeia for the boast, requiring that they sacrifice their daughter to the sea monster or have it ravage their land.

King Cepheus and his wife chained their daughter to a rock so the sea monster could devour her. But just as the sea monster was about the partake of this delicacy, our hero Perseus entered the picture and killed Cetus, rescuing Andromeda from her fate. Later the two were married.

Cetus sits high in the southern sky and is prime for hunting by mid month. It possesses two red giants, one a pulsating variable—which is also a binary system— an orange giant and one G-type star smaller than our sun. It has 14 stars with planets and covers 1231 square degrees of space.  There are three meteor showers associated with Cetus: the Omicron Cetids, October Cetids and Eta Cetids. The constellation is also home to nine galaxies available to amateur astronomers.

Unlike Capt. Ahab, I am unwilling to chase this whale around any maelstroms or round Perdition’s flames. I just sit patiently and wait until the earth transits around the sun and the overhead sky turns to the stars of autumn. Then Cetus presents itself overhead. There are plenty of other celestial objects to keep me occupied in the meantime. But when  Cetus appears overhead it offers cosmic gems worth harpooning. In pursuit of our  quarry, let’s first turn toward the stars of Cetus.

“…the great floodgates of the wonder-world swung open…” 

Herman Melville, Moby Dick, or The Whale

Regardless of what aperture you choose you will never see Alpha Ceti V, the planet to which the genetically superior Kahn and his band of rebels was exiled by Capt. Kirk in Star Trek, the Original Series, after attempting to commandeer his ship. Made famous by the episode “Space Seed” and revisited in the motion picture Star Trek II, “The Wrath of Kahn”, Alpha Ceti (Menkar) has been deceptively hiding her planets. Of all the extrasolar planets discovered thus far none have ever been found around this star.

Designated as the alpha star, Alpha Ceti is actually the second  brightest star in the constellation. Located 249 light years away, at magnitude 2.5 Menkar is a red giant with more than twice the mass and 89 times the radius of the sun. When it dies it will shed its outer layers and evolve into a planetary nebula, a fate that our sun will share in 5 billion years. Some people believe that Menkar is designated the Alpha Star because it sits close to the plane of the ecliptic and marks the path of the sun across the sky. In Arabic Menkar means nostril.  The star sits at the head of Cetus.

Deneb Kaitos—Beta Ceti— is the brightest star in Cetus. It is located 96.3 light years away and shines at a magnitude of 2.04.  Deneb Kaitos is an orange giant possessing 2.8 times the mass and 16.8 times radius of the sun. Deneb Kaitos has evolved from a main sequence star and is on its way toward becoming a red giant.

Plowing its way through interstellar space at 291,000 miles/sec the variable star Mira (Omicron Ceti) creates a bow shock and leaves a 13 light-year long tail of dust and gas in its wake. That light is visible only in the ultraviolet frequencies, and was detected only recently by NASA’s Galaxy Evolution Explorer telescope. Mira is a red giant star close to the end of its life. Mira has already ejected enough mass into surrounding space to  create 3,000 planets the size of our home.

When it dies it will shed off its outer layers and become a planetary nebula. Mira is also a binary system. The B star (Mira B) is a white dwarf that is accreting mass from the primary.  Images taken by the Chandra X-ray Observatory show that matter from the primary star is being consumed by the white dwarf. Both stars are separated by a  distance of 70 astronomical units.

The binary orange giant Mira and companion. Hubble image
The binary orange giant Mira and companion.
Hubble image

Mira is a pulsating variable star—the first of its kind to be observed—and is now part of a class of pulsating variables known as Mira variables (M Variables).  All of the stars in this class, 6 – 7000 of them, are red giants that pulsate with varying periods of brightness of between 80 to 1000 days. Mira has a period of 332 days and can vary in  brightness from magnitude 2.0-10.  Mira is located 420 light years from Earth.

Of all the likely candidates, you would think the Star Trek writers would have chosen for a place to maroon Kahn and his band of genetic supermen, you would think it would have been Tau Ceti. Tau Ceti is a yellow dwarf star 11.9 light years distant that shines at magnitude 3.5. Is one of a few G-type stars that possesses less mass and brightness than our sun.  In 1960 it was chosen by Frank Drake as one of the original Project SETI (Project Ozma ) candidates to search for intelligent life in the universe.

At millions of light years distant, galaxies are like great white whales swimming in our ocean universe.  In binocular’s and small telescopes they shine as nothing more than milky clouds on the dark backdrop of space. It is difficult for us to wrap our minds around the great distances of the cosmos. Even members of our celestial neighborhood are trillions of miles away — far beyond our reach by any means of the rules of the Einsteinian universe.

Compared to the distances in our cosmic neighborhood, these great white whales are  immense! But even the distances between them and the expanse of the universe itself makes them seem like amoebas in a drop of water! So here we are, Jonahs in the belly of a great white whale, staring out into the ocean with intense curiosity.

45 million light years away is Messier 77 (M 77, NGC 1068) a barred spiral galaxy at magnitude 9.6. It is one of the largest galaxies listed in the Messier catalog and the only Messier object in Cetus. It spans 170,000 light years in diameter and is the closest and brightest of the Seifert galaxies. These are galaxies that possess hot, highly ionized gases which emit intense radiation and glow very brightly. This radiation is caused by a very Active Galactic Nucleus (AGN) — a black hole — about 15 million times the mass of our sun! M77 also has very bright arms, the result of prolific star formation.

Spiral galaxies, M77 (face-on) and NGC 1055. Nasa image
Spiral galaxies, M77 (face-on) and NGC 1055. Note the red lanes in M77 and the large halo of NGC 1055. 
Nasa image

Located 250 million light years away is the spiral galaxy NGC 17. You will need a large aperture telescope to see this galaxy; it possesses a magnitude of 15.3. NGC 17 is believed to be a merger between two larger disk galaxies because it demonstrates prolific starburst activity and its core is still very rich in gases.

The barred spiral galaxy NGC 45 shines at approximately a magnitude of 10.4 and is  located 32.6 million light years away. You will want to use a large aperture telescope to   wrestle any details from this galaxy. Although it is very large, the surface details of NGC 45 are spread out and faint. This galaxy presents itself in a nearly face-on orientation to our plane of view.

At 236 million light years away the barred spiral galaxy NGC 47 shines at magnitude 13.5. Like NGC 17 and NGC 45 you will want to use a large aperture telescope to tease out any details from this galaxy. NGC 47 is a small galaxy with a very bright core.

Much closer to us, at 11.1 million light years is NGC 247, also known as Caldwell 62. NGC 247 is a small spiral galaxy— also classified as a dwarf spiral galaxy—  and one of the closest to the Milky Way. It is a member of the Sculptor group of galaxies. NGC 247 possesses a bright nucleus surrounded by stars, gas and dust. The gas forms bright knots in the HII regions that are scattered throughout the galaxy’s outer arm.

Images taken by the Hubble space telescope show that NGC 247 has a large void in the HII regions, which spans nearly 1/3 of the length of the galaxy. Stars in this void are old, red and faint, and indicate that star formation has been halted in this region. It is believed the star formation in this region has not taken place in at least 1 billion years!

At 60 million light years distance the face-on spiral galaxy NGC 1042 shines at magnitude  11.0. It is typically associated with a nearby galaxy NGC 1035 and believed to be gravitationally bound to it because both demonstrate a similar red shift. NGC 1042 possesses a very bright Active Galactic Nucleus (AGN).

Located 60 million light years away, NGC 1055 is the dominant member of a group of small galaxies which are part of the NGC 77 galaxy group. Viewed from our position, NGC 1055 is an edge-on galaxy approximately 100,000 light years across. This galaxy possesses a large box-shaped halo that extends far above and below the galactic plane. In appearance, it bears some resemblance to the Sombrero Galaxy, NGC 104.

NASA images show faint structures within the galactic halo that are believed to be   remnants of an interaction with a larger spiral that took place 10 billion years ago. Like NGC 77,  NGC 1055 is a prolific star producer.  NGC 1055 shines at magnitude 11.4 and will require a large aperture to be able to discern its structure.

NGC 1073 is a barred spiral galaxy similar to our own Milky Way that possesses a very active nucleus that glows in the HII region. It is 80,000 light years across and 55 million  light years away. Hubble space telescope images show visible dark dust lanes, glowing in the HII region, young clusters of blue stars and an active nucleus which likely contains a black hole. NGC 1073 shines at a magnitude of 11.5 so you will want a large aperture to view this galaxy.

NGC 1087 is 80 million light years distant and 86,800 light years in diameter. You will want a large aperture to capture this galaxy. It shines at magnitude 12.2. It is classified as an intermediate spiral galaxy, possessing a small central bar of irregular features  surrounding a disk. The overall surface brightness of the galaxy is very low.

Oh, Starbucks (Espresso, Frappuccino, iced coffee or dark roast)! Stand fast by my side. For I stand duty watch on the Forecastle and man the spyglass!

Pseudo Melville, The Great Whale

When the cold November wind blows across your bow and the nights become tranquil and accompanied by good astronomical seeing, I hope that your heart will yearn to shove off to a remote dark location and set sail into the infinite seas of the cosmos. There is a diamond mine out there, among the stars—filled with cosmic gems.

The Trick Is The Treat

An AFSIG Article by: Paul Trittenbach

Under the darkness of a new moon sky on October 31 ghosts and demons will arise from the netherworld and walk upon the earth. This is the day of Samhain (pronounced “Sah-win”), summer’s end, a 2000-year-old Pre-Christian Celtic celebration held around November 1 for the ending of summer and the time of harvest. Some historical legends purport that the Celts lit bon fires and donned costumes to ward off the dead. In the eighth century Pope Gregory III declared November 1 All Saints Day and incorporated some of the Celtic celebration into the Christian.

Perhaps when humans invented religion we had a need to explain the good and evil we saw in each other, so we balanced the equation by creating the good gods above and the evil ones below. It is a theme that has permeated our literature and movies and has been handed down since the first spoken languages have appeared in our species. And throughout our history almost every culture has celebrated the dead in one way or another. All Hallows Eve was the evening before All Saints Day and later evolved into the modern day celebration of Halloween.

Modern-day Halloween is a playful way of dealing with death. It is a time when little goblins of the neighborhood come out to invade the night seeking treats and promising nasty little tricks to those who fail to deliver. To me, this night when the moon is dark is a great opportunity to dispel some of those demons with science. I propose that you offer them a treat they seldom if ever have experienced: a star party. It is an opportunity for fun suffused with education.

We begin our tour of celestial eye candy by introducing the pralines of the northern hemisphere: the double cluster of the constellation Perseus. NGC 869 and 884 lie 7,500 light years away. Star clusters are groups of stars that are gravitationally bound to each other and moving independently of the rest of the galaxy. The Perseus Double Cluster are the only two known clusters in the Milky Way that are gravitationally bound to each other and moving as a single component at 39 km/s (24mi/s) in our direction.

Each cluster consists of 300 known members of young blue-white stars 12.8 million years old. At the time when the light left these clusters to appear in the eyepiece of your telescope the first established human civilization was firmly planted between the Tigris and Euphrates rivers in the ancient land of Mesopotamia — it is today called Iraq. These were the Samarians, from which we have derived our modern-day word of summer. To them, as to us, the double cluster appears as a large, somewhat milky patch in the sky overhead and can easily be seen from a dark location.

This pair of open clusters is a stunning example of the treats available to amateur astronomers. I tell guests at public star parties that when they see these sparkling diamonds against the velvet black of space they will ask themselves why they never got involved in this hobby sooner. There are numerous other open clusters that you can compare against the Perseus Double Cluster; M38, 39, 34, 11 and the most infamous: M45, the Pleiades.

In contrast to the aforementioned open clusters are the globular clusters, such as M13. If the double cluster is the pralines of celestial eye candy then globular clusters must be the gumdrops.Turning to the globular’s immediately after showing the open clusters yields a stunning, “wow” moment for the audience. In addition to the visual impact of viewing the two types of clusters, both possess opposite historical and compositional backgrounds.

Globular clusters reside at the opposite end of the age spectrum. They are fossils of the cosmos nearly as old as the universe itself. M13 is 11.65 billion years old! Unlike open clusters which formed inside our Milky Way, globular clusters are nomads roaming the universe and temporarily taking up residence inside the halo of our galaxy. They are densely packed associations of stars — the proverbial Guinness book example of “how many people can you fit into a phone booth”.

On the evening of October 31 M13 will be in the western part of the sky, just above the horizon. This is the most densely packed globular cluster available to most of the northern hemisphere (Tucson, Arizona lies close enough to the southern hemisphere to catch a view of the Omega Centauri cluster). M13 consists of 300,000 known stars compacted into a spherical volume of 145 ly! In addition to explaining what a light year is in terms of distance, M13 is an exercise in warping the mind around celestial mechanics.

You can compare the distance between Earth and its nearest stellar neighbor, Proxima Centauri at 4.2 light years, away to the same spherical area at the center of M13. In the 4.2 light year distance between us and our nearest our neighbor M13 would have 100 stars! In the same spherical distance of 4.2 light years the core of M13 would be the residence of 1000 stars! You can point out that the known members of a star cluster are those that we are able to visually count and that the Milky Way is dominated by binary stars in addition to other star systems that consist of three or more members circling either one another or a common invisible axis.

At the time when the Kerbarian cave Culture of Haifa, modern day Israel, was being established the light from M13 was departing to arrive in your eyepiece. While those people were fabricating stone tools light from 300,000 stars shone brightly into the universe. M13 is located 22,200 miles away in the constellation of Hercules. It is a popular summertime object among amateur astronomers. From a dark site it appears as a small fuzzy patch and is easily viewed through a pair of binoculars or a small telescope. Telescopes, however, will resolve the patch into stars.

M2 and M15 both provide good examples of globular star clusters. M2 is probably easier to present from an urban area because of its magnitude of 6.4. At one time star clusters were grouped with the species of nebulae — murky patches of light scattered among the stars. The word nebula is ancient Greek for “cloud” and before the invention of telescope star clusters, galaxies and true nebulas were all cloud-like structures in appearance. Even into the early 20th century the Andromeda galaxy was known as the Andromeda nebula.

Now that you’ve demonstrated the magic of star clusters try pulling a binary star out of your hat. The constellation Cygnus, the Swan, hangs west of Zenith in October. Beta Cygni, otherwise known as Albireo appears as a single star to the unaided eye. However, it presents one of the most stunning binaries in the Milky Way galaxy. Albireo is also a test in color perception. One star is a cool orange while the other one is a hot blue. To my eyes, the primary appears as a golden yellow and the secondary is a hot blue. Together the two stars present a striking color contrast.

Alberio is located 380 ly (Light years) from Earth. Harvard University was being established when the light left Albireo to arrive In your eyepiece. The first and second component orbit each other with a period of 75,000 years. Two thirds of the stars in the Milky Way are binaries but few of them can boast the visual impact of Albireo. In addition to showing Albireo you may want to show the most common Milky Way binary, Polaris.

If you’re in the mood for telling ghost stories then nothing can be more appropriate than showing them a nebula. The best of the summer nebulae, the Trifid, Lagoon and Eagle lay low on the horizon. Those who have a good view of the southern sky may still be able to catch a fleeting glimpse of them. But there are other ghosts in the sky that we can turn our telescopes to.

Aside from most of the planetary’s, reflection and emission nebulae appear as ghostly apparitions of black and white clouds hanging in space. M27, the Dumbbell nebula, is one exception. From our viewing angle the dumbbell not only appears dumbbell-shaped, because of the way that its lobes have expanded from the white dwarf driving it, but it also appears black-and-white to our eyes. Located 1200 away these expanding clouds of gas have been blown from a star similar to our sun 4000 years ago. At the time of this star’s death the Babylonians were developing mathematics.

The outburst of expanding gas lobes witnessed on M27 are one light year across and expanding outward at a velocity of 20 mi./s. The Dumbbell nebula was the first Planetary Nebula (PN) ever discovered. An Ultra High Contrast filter (UHC) will help you to pull out the details of the Dumbbell. An additional nebula to look for would be the North America nebula. For additional details on the North American nebula see my Cosmic Gems article from August.

For a nebula of a different color try M57, the Ring nebula. At the time when the light left this nebula 2300 years ago King Ptolemy II of Egypt was only a few years away from building the very first lighthouse at the mouth of the Nile. It would be 400 feet high and seen from 40 miles away. But the Ring nebula is a more substantial lighthouse, with the light being pumped out by a remnant of a star of similar mass to our sun, which upon exhausting its hydrogen fuel shed its outer layers in the last, great gasp of death. The remnant of the star is a white dwarf no larger than our earth.

Viewed from our position the outward expanding shell of gas and dust are excited by the ultraviolet radiation emitted by the white dwarf and radiating a rainbow of colors. Although M57 is also a planetary nebula it is a colorful contrast to that of M27. The nebula’s expanding shell of gas is 1.3 light years in diameter. Nebulae provide an opportunity to discuss how chemicals are formed within stars and the explosions that occur after their death. It is also an opportunity to explain how new stars are formed along with any planets or life that may occur on them.

You gotta have monsters! No Halloween story would be complete without them. So now we turn to the Alpha Star of the Constellation Taurus: Aldebaran. Aldebaran, the eye of the bull, is an orange giant star located 65 ly away. When the light left the star Ethel and Julius Rosenberg were being convicted of selling A-bomb secrets to the Soviet Union by the United States.

Aldebaran is a variable star but his variability is virtually unnoticeable to the human eye. It is also a binary star, possessing a secondary that is only three light seconds away (as opposed to our sun which is eight light minutes away).At 43 times the radius of our sun ( the radius of our sun is 432,000 miles) Aldebaran is a monster, although far from being the largest star known. The largest star on record is VY Canis Majoris, a red hyper giant and a eighth magnitude star 1420 times the radius of our sun!

Of course if you really want to talk about monsters point to the area of Cygnus X1. You will not be able to show them this black hole through your telescope but you can tell them that it was the first confirmed radio source verified as a black hole. Black holes like Cygnus X1 are the Frankenstein’s of nature. Cygnus X1 is considered to be a stellar mass black hole possessing 14.8 times the mass of our sun. It is located 6,070 ly from Earth.

Periodically stars many times the mass of our sun exhaust their fuel and the remaining material loses his outward push against the attraction of gravity. The mass of the star is so great that the gravitational attraction overwhelms all existing matter which collapses inward to an point known as a singularity — a word that means “mystery”. So powerful is the attraction of gravity that nothing can escape it, even light itself. As a result, black holes are mysterious in nature, having yielded up clues only from stars around them — some of them they are cannibalizing.

The nearby star orbiting Cygnus X1 is HDE226868 a ninth magnitude O-type supergiant star. You should be able to locate this star through your telescope. Here is an opportunity to explain the invisible electromagnetic spectrum and the x-ray radio source that makes detecting a black hole possible. It’s also a chance to discuss the radio spectrum and how humans use it in our modern world.

Physicists and mathematicians have determined that the space and time near black holes is radically changed from the Newtonian laws of the universe. As a result, black holes have become a favorite subject of science fiction — including Star Trek where the Enterprise frequently utilizes them to travel back in time. Studies indicate that black holes are quite abundant throughout the universe. In fact, it is an irony that black holes seem to be destructors of stars and also the creators of galaxies.

The last object that I want to cover in my Halloween star party is M31, the Andromeda galaxy (Andromeda nebula). The Andromeda galaxy is a large spiral galaxy, like our Milky Way, except possessing twice the mass. Andromeda has 1 trillion stars and is the largest galaxy in our local group, a group of 45 galaxies, which constitutes part of a super cluster of 2000 galaxies known as the Virgo Super Cluster. It is approximately 220,000 ly across (the Milky Way is 190 ly across) and 2.5 million ly from Earth. At the time when the light first left the Andromeda galaxy to appear in your eyepiece humans were fashioning their very first tools.

M31 is our nearest galactic neighbor. It is on a collision course with our galaxy, which will take place in 3.75 billion years. It is visible to the naked eye as a large fuzzy patch in the constellation of Andromeda. It is visible through pair binoculars and easily viewed through low power in a telescope. The nucleus of Andromeda is so bright that overwhelms the eye of the observer Tell your guests that to get a good view they should use adverted vision — turn their eyes slightly off center of the galaxy to see the details.

I think a themed star party like one for Halloween would be a great way to have fun while providing education and sharing a fascinating hobby. I can envision some of you dressed up as Darth Vader and turning the little goblins of your neighborhood toward dark side of day. A star party like this would be a great team builder for your organization — with opportunities for a variety of topics, from mythology to science, history and science fiction, art and culture. It’s an chance to demonstrate how we’ve come a long way from how the ancients thought about the universe to science casting light upon the truth.

Of course a Halloween star party is about serving celestial eye candy. But it would be a nasty trick to forget the confectionery treats. Halloween is a costume party, and not just one for the youngsters, with sugary rewards. Perhaps in 4 million years when Andromeda merges with our galaxy we will have a new name for candy bar. For now, we still have the old standbys that we grew up with: Three Musketeers, Snickers, Baby Ruth, Kit Kat… — to share with the younger generations. But for now and into the foreseeable future, remember, you can’t star gaze without the Milky Way!

General Meeting – December 2016

Introductory Presentation – 6:30 PM

Title:  What’s New At The Astronomical League?

Speaker: Ron Kramer  (The Astronomical League)

Main Presentation – 7:30 PM

Title:  How DESI At Kitt Peak Will Search For Dark Energy’s Secrets

Speakers: Dr. Arjun Dey and Rob Probst  (NOAO)

Grand Canyon Star Party

Tucson Amateur Astronomy Association, in conjunction with the National Park Service, will sponsor a week-long Star Party at the Grand Canyon.

Observing will be from Dusk to about 11 pm. Telescopes will be set up behind the Visitor Center. There will also be nightly talks @ 8 pm in the Visitor Center Auditorium. There will be Solar Observing throughout the day at various locations around the Park.

We will observe a wide variety of Celestial Wonders under some very dark and pristine skies. Come join us for some astronomy fun at one of the Seven Natural Wonders of the World!

For further information, contact:
Jim O’Connor
South Rim Coordinator, Grand Canyon Star Party
gcsp [at] tucsonastronomy.org
P, O. Box 457
Cortaro, AZ 85652
Home: (520) 546-2961
Cell: (520) 405-6551

General Meeting – November 2016

Introductory Presentation – 6:30 PM

Title:  Seasonal Night Sky Objects

Speaker:  Mary Turner, PhD

Main Presentation – 7:30 PM

Title:  Making Pluto Great Again

Speaker:  Don McCarthy is an Astronomer/Lecturer, and Distinguished Outreach Professor at Steward Observatory.

 

 

Star Party-Tucson Mountain Park Ironwood Picnic Area

Star Party-Pima County NRPR @ Tucson Mountain Park (Ironwood Picnic)
WEST TUCSON
Setup:  6:30 pm
Observing: 7 – 9 pm
Viewing Location: Ironwood Picnic area near restroom facilities.
Tucson Amateur Astronomy Association will have several telescopes to view some amazing solar system and deep-sky celestial objects.

Star Party-Agua Caliente Park

Star Party-Pima County NRPR @ Agua Caliente Park
NORTHEAST TUCSON
Setup:  6:30 pm
Observing: 7 – 9 pm
Viewing Location: Bus Lanes @ North end of Parking Lot
Tucson Amateur Astronomy Association will have several telescopes to view some amazing solar system and deep-sky celestial objects.

Star Party-Oracle State Park

Star Party-Oracle State Park.
ORACLE
Setup:  6 pm.  Observing:  7 – 9:00 pm
Viewing Location:   Sidewalk along the Kannally Ranch House parking lot and on the Ranch House upper patio.
Tucson Amateur Astronomy Association will have several telescopes to view some amazing solar system and deep-sky celestial objects.